TEMPERATURE FIELD IN TWO-LAYER THERMAL
SHIELDING ACTING AGAINST A PULSED FLOW OF HEAT

A, M. Fain and A. Yu. Nul'man UDC 536.2.01

In order to find the temperature field in a two-layer shield designed to resist pulsed heat flows,
a modification of the method of weighted residues is employed, together with the heat-~balance
equation, Iinear and nonlinear formulations are considered.

The operation of a large number of modern systems working under conditions of brief, pulsed thermal
actions depends on the possibility of ensuring reliable heat shielding for devices extremely sensitive to tem~
perature changes, Two opposing demands are usually laid upon the shielding: a minimum weight and size, on
the one hand, and a high stability of temperature conditions behind the barrier, on the other. An effective
solution frequently employed is a two-layer thermal shield (Fig. 1) with a thermal resistance at the boundary
D between the layers; the outer layer A is made of thin metal sheet and the inner layer B, of heat-resistant
plastic. The screening layer A, which may be regarded as a plate with an extremely small Biot number,
provides external heat release, The thickness and material of the main layer B are chosen in such a2 way as
to ensure that the temperature of the wall E should remain practically unchanged under the action of an exter-
nal pulsed thermal flux.

High working temperatures producing thermal radiation, substantial temperature gradients, and requir-
ing allowance to be made for variations in the physical properties of the materials, together with the foregoing
requirements imposed upon the heat shield, in general exclude the possibility of linearization. However, even
in the linear formulation the solution obtained by classical methods becomes unstable owing to the necessity of
allowing for many terms of the expansion, which is inevitable in the case of pulsed thermal action.

In this paper we shall consider a method of approximately determining the temperature field in a two-
layer shielding such as will give a high engineering accuracy, stability of the solution, and practically identical
amounts of computing work for the linear and nonlinear approaches.

Linear Problem, Let a heat flow g(7) fall on the surface C, reaching a maximum qmax at the instant of
time 7 = Tmax. The original heat-conduction equation and boundary conditions are specified in the form

T — 0Ty = 0; (1)

T T 4 RATueco, < = 0; @)
Tilems. w0 = Temg = Tlx, 10 = 0; 3)
g— E'\FSTL'— al + M limo, : =0. ©(4)

Equation (2) expresses the temperature jump at the boundary between the layers; condition (4) represents
the heat-balance equation. Let us introduce the following dimensionless coordinates and notation:

Y=x/8 t =T/Ty; 1= T/ Tmas
Fo = a1, /8% T =T/Ty; | = /g puy;
oy = E\_?STU/(qmaxrmax); k= ol o/qmax;

by = ATo/guass fone = E,RIS; Ry = RA/S.
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Fig. 1. Computing scheme for two-layer shielding.

Fig. 2. Example of calculation: f, function of thermal flux, dimensionless; t, temperature of layer A,
dimensionless; s,, effective depth of heating, dimensionless; 1) linear problem (boundary condition of
the third kind); 2) nonlinear problem (radiation by the Stefan—Boltzmann law); 3) nonlinear problem (ra-
diation by the Stefan—Boltzmann law, variable thermal conductivity); 4) linear problem (comparative
solution by the method of iterations).

In the notation of (5) the original problem (1)-(4) takes the form

L({)={— Fo ty = 0; (6)

M, 9= 0)==f—kyt L kyty—kt + kytypgon="0; @
Dit, p=0)=l—1—kytyly—0.9=0; @

7,::)—-—0 =1lig yo0 =0 ®

According to definition, the thermal flux has two monotonic regions (Fig. 2): rising for n < 1 and falling
for n > 1. Naturally, on allowing for heat transfer to the ambient the temperature field should have two mono-
tonic regions; the maximum temperature of layer A will lag with respect to the maximum thermal flux, usually
by a time much greater than the duration of the external pulse. It is precisely this delay which leads to the
extremely difficult and not always soluble problem of overcoming the instability of computer calculations in
obtaining practical results.. This difficulty may be avoided by considering the original problem for the two
time intervals I (0 =n =1)and Il (n > 1). Herety =t,, f; =f andtyy =t —t3, /=1, =1 f. Inthis case,
first,t, fj G =1, 2, 3) will be monotonic functions, and the fundamental possibility of instabilities appearing
in the solution will vanish; secondly, tj should satisfy (6)-(8) and the initial conditions

tl§¢. n=0 = 2;!n=-0 =iy, n=t == t;fn:;1 = 0;

(10)

tz-l‘i‘. n=t = tl.Jw. n=1; t_;'n=l = i;.i'n.;,.

In estimating the merits of different versions of the shielding we must know three defining parameters:
the temperature of layer A —t (7); the maximum temperature of layer B — t(0, n); and the time during which
the temperature of wall E is no greater than a set limit. Taking account of (8) it is sufficient to determine
simply the first and third parameters, Taking these as minimizing functions s;(n), s,(n) and using the well-
known idea of a finite heating depth [1], we shall seek the approximate solutions Ej in the form

I = 835 (1 — sy 1)
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We replace the differential equation (6) by the integrated equation [2]

52]- ~ I~
j L{) O o, (12)
g dslj

Allowing for (11), conditions (7) and (12) may be transformed and reduced to the normal form:

5= P11,iP1s, P10, . 3
! P91, i Pog, i Pog, i |
830 (0) = 853 (1); 513 (1) = 832 (1) 855 (1) =5, (1),
where
G = o+ By + 2S5 Pras = — LonySylSE; ;
Q0.5 = [;— 15 (k -+ 2 ky/s,5); (14)

2. . —
Qor.5 = 2525 Pog.j = S1i%7; Pao.j = 6.67F0 sy;.

Solution (13) enables us to find the unknowns s;j and hence the unknown temperature field in practically
any computer,

Nonlinear Formulation

On allowing for thermal radiation from the surface C obeying the fourth-power law the thermal balance
condition takes the form

g— YT — o — oT*LAT so, « = 0. {15)
The heat~conduction equation (6) remains as before, and so do conditions (8) and (9). Let us denote
ko‘ = 0)Tlé/qvmax; (]_6)
F(t, b =0) = —kq ({ — kyly)*ly=0, n=0 = 0.
Condition (15) expressed in the notation of (7) and (16) then takes the form
M@ py=0—F{ =0 =0 7

Seeking the solution in the same way as in the linear problem, for the same monotonic regions I and II
we find that t; and t, should satisfy (6) and (17), while t; should satisfy Eq. (6) and the condition

Mty Y =0—F(y, 9=0—F(ly—1, p=0)=0, (18)

of which it is quite easy to convince oneself by subtracting (18) from (17) and considering that tjp = t, ~t;. The
boundary conditions retain the form (10).

~ Taking the form (11) for fJ as before, from conditions (12), (17), and (18) we arrive at the system (13),
in which only one free term differs from (14) and is equal to
Pro,5 = — 815 (R + Zky/sy;) — Gy 19
in which
Gy = kostj (1 + 2kyls,)t for j=1, 2
_ 20)
Gy =G, — kos?i [s15/815 — 1 -+ 2k (835 — Sp0)/(Sz = Sa)1*-

In order to be specific, let us consider the boundary condition with the thermal radiation obeying the
fourth-power law, the thermal conductivity being a linear function of temperature x = A, (1 + BT).

In the notation adopted, the original problem may be written as follows:
P(t)={—Fo[(l + BrijtyJy =0 (Br = BT,); ' 1)

F e i (g — FyBr te) — kb (1 + Brt) — kyty (1 +Br) -+ R [f — kyty (1 4 Br £)]p—s, n =0 (22)

subject to boundary conditions (10). As in the two earlier problems we consider two time intervals, replacing
(21) by the integrated condition
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2

| P(t})% i = 0; (23)
(1]

815

substituting t in {22) and making some simple transformations, we again arrive at Eq. (13), in which ik, j
are simply d1stmgu1shed by having a more complicated form,

Alowance for thermal radiation and a variable thermal conductivity (other conditions being equal) leads
to the appearance of strongly expressed maxima considerably displaced to the left hand side. Like the laws
governing the heating of B, this result is in excellent agreement with physical considerations.

A comparative calculation carried out for the linear problem by the considerably more troublesome
method of iterations revealed excellent agreement between the results (Fig. 2).
NOTATION

T, T, temperatures of layers A and B; ¢, c, specific heats; 5, 8, thicknesses; x, coordinate; g, ther-
mal flux; 7, time; a, thermal diffusivity; R, thermal resistance; o, reduced emissivity; ¢, dimensionless
coordinate; n, dimensionless time; f, dimensionless thermal flux; t, t, dimensionless temperatures; Fo,
Fourier number; s, minimizing function.
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